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Existing manifold learning algorithms use Euclidean distance to measure the proximity of data points.
However, in high-dimensional space, Minkowski metrics are no longer stable because the ratio of distance
of nearest and farthest neighbors to a given query is almost unit. It will degrade the performance of manifold
learning algorithms when applied to dimensionality reduction of high-dimensional data. We introduce a new
distance function named shrinkage-divergence-proximity (SDP) to manifold learning, which is meaningful
in any high-dimensional space. An improved locally linear embedding (LLE) algorithm named SDP-LLE is
proposed in light of the theoretical result. Experiments are conducted on a hyperspectral data set and an
image segmentation data set. Experimental results show that the proposed method can efficiently reduce
the dimensionality while getting higher classification accuracy.
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Hyperspectral data has high spectral dimension and
altitudinal interband redundancy which greatly abate
the performance of common analysis techniques. To
solve this problem, researchers have proposed many
methods to reduce data volume, such as image
compression[1], endmember extraction[2], and dimension-
ality reduction[3]. Manifold learning is one of the novel
and efficient nonlinear dimensionality reduction tech-
niques. Researches have shown the great potential of
manifold learning for dimensionality reduction of hyper-
spectral data[4]. However, because of the “curse of di-
mensionality” phenomenon[5], the distance function will
become unstable in high-dimensional space even with
the commonly used Minkowski metrics on the Euclidean
space[6].

Hsu et al. provided the sufficient and necessary con-
dition of unstability of distance function and designed
a novel distance function called shrinkage-divergence-
proximity (SDP)[7]. In this paper, we firstly prove the
stability of SDP. Then in light of the theoretical result,
we propose an improved locally linear embedding (LLE)
algorithm, named SDP-LLE. Experiments are conducted
on two data sets, one is hyperspectral data from the Air-
borne Visual/Infrared Imaging Spectrometer (AVIRIS),
and the other is image segmentation data from the
University of California, Irvine (UCI) machine learning
repository. Experimental results show that the proposed
method can efficiently reduce the dimension while get-
ting higher classification accuracy.

The measurement of similarity or distance is fundamen-
tal in data mining field. Especially during the manifold
learning process, most algorithms begin with the calcu-
lation of a matrix of distance. It has been proved that
the ratio of distances of nearest and farthest neighbors
to a given query in high-dimensional space is almost unit
for Minkowski metrics Lp (p ≥ 1)[6]. Hinneburg et al.

examined the unstable behavior of Lp norm[8]. SDP is a
meaningful distance function defined as follows.

Let f be a non-negative real function defined on set of
non-negative real numbers such that

fa,b(x) =

{

0, 0 ≤ x < a
x, a ≤ x < b
ex, otherwise

. (1)

For any m-dimensional data point ~x = (x1, · · · , xm) and
~y = (y1, · · · , ym), we define the SDP function as

SDPG(~x, ~y) =

m
∑

i=1

ωifsi1,si2
(d1 (xi, yi)), (2)

where the distance function fsi1,,si2
is defined between

~x and ~y on each individual attribute, ωi (i = 1, · · · , m)
implies the importance of attribute i, si1 and si2 are de-
pendent on the distribution of data points projected on
ith dimension, and d1 is the distance function of a one-
dimensional (1D) data space. Equations (2) is a general
form of SDP.

We provide a proof in the following theory where
the stability of SDP distance function is derived, show-
ing that SDP distance function is stable in any high-
dimensional space.

Let X = {~x1, · · · , ~xN} be a data set in high-
dimensional space (N is the number of data points), and
take on certain clustering structure, with the class num-
ber and the attribution of each data point unknown. The
distance function SDP is stable if all attributes of the
data set is independent of each other. This theory is
proved as follows.

According to Ref. [7], the result will be proved if we
show that the extremal ratio Dmaxm/Dminm will not
converge to 1 with increasing m (Dmax m, Dminm are the
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farthest and nearest distances between data points in m-
dimensional space). Assume that the distance between
~xi0 and ~xj0 is maximal, and the distance of ~xi1 to ~xj1 is
minimal. It is obvious that ~xi0 and ~xj0 are in different
classes, ~xi1 and ~xj1 are in the same class.

Set

|~xi0 − ~xj0| = {|xi0,1 − xj0,1| , · · · , |xi0,m − xj0,m|}

= (r1, · · · , rm) ,

|~xi1 − ~xj1| = {|xi1,1 − xj1,1| , · · · , |xi1,m − xj1,m|}

= (r′1, · · · , r′m) , (3)

Dmax m = D(~xi0, ~xj0), Dminm = D(~xi1, ~xj1). (4)

For any ε > 0, let s∗k1
be the maximum of sk1

which
satisfies P {d1 (xik, xjk) ≤ sk1

} ≤ ε in the condition that
~xi and ~xj fall into different classes, that is,

s∗k1
= max {sk1

|P {d1 (xik, xjk) ≤ sk1
} ≤ ε} . (5)

Using the same argument as shown before, let s∗k2
be the

minimum of sk2
which satisfies P {d1 (xik, xjk) ≥ sk2

} ≤
ε in the condition that ~xi and ~xj are in the same class:

s∗k2
= min {sk2

|P {d1 (xik, xjk) ≥ sk2
} ≤ ε} . (6)

Defining: s1 = min
{

s∗k1
|k = 1, 2, · · · , m

}

and s2 =

max
{

s∗k2
|k = 1, 2, · · · , m

}

, it is easy to check that s1 de-
creases and s2 increases respectively with the increase of
dimensionality m.

Considering that all attributes of the data are indepen-
dent of each other, it is natural based on the definition
of SDP that: when ~xi and ~xj are in different classes,

P {SDPs1,s2
(xi, xj) = 0} ≤ (ε)

m P
−→

m→∞

0, (7)

when ~xi and ~xj are in the same classes,

P {SDPs1,s2
(xi, xj) ≥ mes2} ≤ (ε)m P

−→
m→∞

0, (8)

where ~xn
P
−→ ~c represents that a vector sequence

~x1, ~x2, · · · converges in probability to a constant vector ~c
if ∀ε > 0, limn→∞ P {|~xn − ~c| ≤ ε} = 1.

According to the analysis above, we have

P (fs1,s2
(ri) = 0)

P
−→

m→∞

0, (9)

P
(

fs1,s2
(r′i) = er′

i

)

P
−→

m→∞

0. (10)

Without loss of generality, let

P (fs1,s2
(ri) = ri, s1 ≤ ri < s2)

P
−→

m→∞

t1,

P (fs1,s2
(ri) = eri , ri ≥ s2)

P
−→

m→∞

1 − t1, (11)

P (fs1,s2
(r′i) = 0, 0 ≤ r′i < s1)

P
−→

m→∞

1 − t2,

P (fs1,s2
(r′i) = r′i, s1 ≤ r′i < s2)

P
−→

m→∞

t2, (12)

where 0 < t1, t2 < 1.
It is clear that

Dmax m ≥ mt1 · s1 + m(1 − t1)e
s2 , m → ∞, (13)

Dminm < mt2 · s2, m → ∞. (14)

Based on expressions (13) and (14), we get

Dmaxm

Dminm

>
mt1 · s1 + m(1 − t1) · e

s2

mt2 · s2

=
t1 · s1 + (1 − t1) · e

s2

t2 · s2
≫ 1, m → ∞.

Thus we arrive to the conclusion that SDP distance func-
tion is stable.

Among the existing manifold learning algorithms such
as isometric feature mapping (Isomap)[9], LLE[10], Lapla-
cian eigenmap[11], and stochastic neighbor embedding
(SNE)[12], LLE has some advantages[13]: optimizations
not involving local minima, recovering global nonlinear
structure from locally linear fits, lower computation load
because it only considers local relation of data points.
This algorithm consists of three steps:

1) Find k nearest neighbors for each point ~xi in space
RD by using Euclidean distance to measure similarity.

2) Calculate the reconstructing linear coefficients
by minimizing the reconstruction error[10] ε (w) =

N
∑

i=1

∥

∥

∥

∥

∥

~xi −
N
∑

j=1

wij~xj

∥

∥

∥

∥

∥

2

(N is the number of data points).

Subject to two constrains,
N
∑

j=1

wij = 1 and wij = 0, if ~xj

is not the neighbor of ~xi.
3) Compute low-dimensional embeddings which best

preserve the local geometry by minimizing the
embedding cost function for the fixed weights[9]:

δ (~y) =
N
∑

i=1

∥

∥

∥

∥

∥

~yi −
N
∑

j=1

wij~yj

∥

∥

∥

∥

∥

. Under two constraints,

1
N

N
∑

i=1

~yi~y
′

j = 1 (normalized unit covariance) and

N
∑

i=1

~yi = 0 (translation-invariant embedding), a unique so-

lution is guaranteed.
We use SDP to measure the similarities in the first

step. Furthermore, the hierarchical method[14] is used to
automatically chose appropriate neighbor parameter k.

We performed experiments on hyperspectral image
data generated by AVIRIS. Figure 1(a) is a sub image
chosen from the source reference map with rows from
345 to 468 and columns from 267 to 311 by TNTmips
software. Using LLE and SDP-LLE for feature extrac-
tors respectively and c-means for classifier, we display
the classification results with different gray levels for
different classes. In comparison, the results of SDP-LLE
(Fig. 1(b)) can describe more details than the results of
LLE (Fig. 1(c)). It proves that SDP-LLE can preserve
more information than LLE during the dimensionality
reduction process.

In order to use classification accuracy to quantifi-
cationally compare SDP-LLE and LLE, we got an image
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Fig. 1. Comparison of classification by LLE and SDP-LLE.
(a) Sub image from source reference map; (b) result of SDP-
LLE; (c) result of LLE.

Table 1. Confusion Matrix of Test Data Reduced
by LLE

Referenced Data

B S F C W P G

B 212 0 182 40 67 37 2

S 0 277 0 23 0 0 0

Classified F 0 0 35 9 4 15 21

Data C 19 19 9 202 21 0 0

W 69 0 74 11 208 9 28

P 0 4 0 9 0 239 6

G 0 0 0 6 0 0 243

For simplicity, clusters of Brickface, Sky, Foliage, Cement,
Window, Path, and Grass are represented by B, S, F, C, W,
P, G, respectively.

Table 2. Confusion Matrix of Test Data Reduced
by SDP-LLE

Referenced Data

B S F C W P G

B 241 0 146 48 62 20 22

S 0 299 0 9 6 0 0

Classified F 0 0 89 2 5 9 1

Data C 19 1 4 213 16 0 0

W 40 0 61 12 208 0 24

P 0 0 0 12 0 269 0

G 0 0 0 4 3 2 253

image segmentation data set from UCI machine learning
repository and use confusion matrices[15] to visualize the
predicted classes of referenced data. The dimensionality
of this data set is 19. It consists of 2100 data points and
7 clusters with equal data points each. The names of the
clusters are Brickface, Sky, Foliage, Cement, Window,
Path, and Grass. The confusion matrices for LLE and
SDP-LLE are illustrated in Tables 1 and 2.

The overall accuracy is computed as the percentage of
correctly classified pixels among all considered pixels. In
confusion matrix, it is the sum of values in the main
diagonal divided by the total number of pixels. As illus-
trated, the overall accuracy of Table 1 is 0.74857, higher
than that of 0.67429 in Table 2.

In this paper, we concentrated on meaningful distance
function in high-dimensional space and its application
to dimensionality reduction by manifold learning algo-
rithms. We proved the stability of SDP distance func-
tion and provided SDP-LLE algorithm by using SDP to
measure similarities instead of Euclidean norm of original
LLE. Experiments demonstrated that the improved LLE
algorithm is more capable to discover the true structure
of high-dimensional data sets.
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ztian@nwpu.edu.cn.

References

1. J. Huang, R. Zhu, J. Li, and Y. He, Chin. Opt. Lett. 5,
393 (2007).

2. L. Xun, Y. Fang, and X. Li, Acta Opt. Sin. 27, 1178
(2007).

3. Y. Zhu, P. K. Varshney, and H. Chen, in Proceedings
of IEEE International Conference on Image Processing
2007 4, 97 (2007).

4. Y. Chen, M. M. Crawford, and J. Ghosh, in Proceed-
ings of 2005 IEEE International Geoscience and Remote
Sensing Symposium 6, 4311 (2005).

5. D. L. Donoho, “High dimensional data analysis:
the curses and blessings of dimensionality” Lec-
ture at the “Mathematical Challenges of the 21st
Century” Conference of the American Math. So-
ciety (2000). Currently available on the web
at http://www.stat.stanford.edu/∼donoho/Lectures/
AMS2000/AMS2000.html (April 25, 2008).

6. K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft,
Lecture Notes in Computer Science 1540, 217 (1999).

7. C.-M. Hsu and M.-S. Chen, in Proceedings of the 6th
SIAM International Conference on Data Mining 12
(2006).

8. A. Hinneburg, C. Aggarwal, and D. A. Keim, in Proceed-
ings of the 26th International Conference on Very Large
Data Bases 506 (2000).

9. J. B. Tenenbaum, V. de Silva, and J. C. Langford, Sci-
ence 290, 2319 (2000).

10. S. T. Roweis and L. K. Saul, Science 290, 2323 (2000).

11. M. Belkin and P. Niyogi, “Laplacian eigenmaps and
spectral techniques for embedding and clustering” in Ad-
vances in Neural Information Processing Systems vol.14
(MIT Press, Cambridge, 2002) pp.585 − 591.

12. G. Hinton and S. Roweis, “Stochastic neighbor embed-
ding” in Advances in Neural Information Processing Sys-
tems vol.15 (MIT Press, Cambridge, 2003) pp.833− 840.

13. L. K. Saul and S. T. Roweis, “An introduction to locally
linear embedding” http://www.cs.toronto.edu/∼roweis/
lle/papers/lleintro.pdf (July 18, 2007).

14. O. Kouropteva, O. Okun, and M. Pietikainen, in Pro-
ceedings of the 1st International Conference on Fuzzy
Systems and Knowledge Discovery 359 (2002).

15. F. Provost, T. Fawcett, and R. Kohavi, in Proceedings of
the 15th International Conference on Machine Learning
445 (1998).


